Parameterized Algorithms & Computational Experiments Challenge

www.pacechallenge.org

December 16th, IPEC 2020, Hong Kong

Goals

Investigate the applicability of algorithmic ideas from parameterized algorithmics

- 1. provide bridge between algorithm theory and algorithm engineering practice
- 2. inspire new theoretical developments
- 3. investigate the competitiveness of analytical and design frameworks
- 4. produce universally accessible libraries of implementations & benchmark inputs
- 5. encourage dissemination of the findings in scientific papers

Impact of PACE

Motivation: Explaining succe

- PACE 2017: Top 4 solvers on mi solver on treewidth track based of
- Implementations based on PMCs:
- Treewidth [Tamaki, 2019]
- Fractional hypertreewidth
 [Korhonen, Berg, and Järvisalo, 2019]
- Phylogenetics
 [Korhonen and Järvisalo, 2020]
- Enumeration of minimal triangulations

[Ravid, Medini, and Kimelfeld, 2019]

Story behind PACE 2016

Developed a new algorithm to solve the LP!

- \Rightarrow Practical and theoretical improvements
- $> 1^{st}$ place in the competition
- Linear-time kernelization of FVS (ICALP 2017)

400

Dec 15.

300

Linear-time FPT for various problems (FOCS 2018)

ng

Steiner Tree algorithm developed in PACE 2018 (AAAI 2019).

500

8/19

PACE is a great competition ③

200

n

100

0

3

The history of PACE

PACE 2021: CLUSTER EDITING

Challenge tracks:

- 1. Exact algorithms
- 2. Heuristic algorithms
- 3. Kernelization algorithms <u>https://pacechallenge.org/2021/tracks/</u>

Program Committee:

Leon Kellerhals Tomohiro Koana André Nichterlein* Philipp Zschoche

Technical University of Berlin

PACE 2022: We need your help!

Wanted:

researcher with experience in theory & practice of parameterized algorithms, to be the program chair of PACE 2022

- Set up challenge tracks in discussion with the steering committee
- Assemble a program committee to help with selection of instances, setting up the evaluation platform, handling submissions, evaluating implementation reports
- Publish an article summarizing the challenge in the IPEC proceedings

Potentially interested? Contact the steering committee!

Steering committee

Édouard Bonnet Holger Dell Johannes Fichte Markus Hecher Bart M. P. Jansen* Łukasz Kowalik Marcin Pilipczuk Manuel Sorge

Former members

Thore Husfeldt	(2016-2019
Petteri Kaski	(2016-2020
Christian Komusiewicz	(2016-2020
Frances Rosamond	(2016-2019
Florian Sikora	(2017-2020

LIP, ENS Lyon Goethe University Frankfurt and IT University of Copenhagen Technische Universität Dresden Technische Universität Wien Eindhoven University of Technology University of Warsaw University of Warsaw Technische Universität Wien

PACE 2020 Award Ceremony

Łukasz Kowalik

■ UNIVERSITY ■ OF WARSAW

Outline

- 1. PACE 2020 organization
- 2. Treedepth
- 3. Dataset
- 4. Exact track
 - Results
 - Short summary
 - Presentations of five winning teams
- 5. Heuristic track (11:15 CET, 18:15 HKT)
 - Results
 - Short summary
 - Presentations of five winning teams

Program Comittee

- Łukasz Kowalik (chair)
- Marcin Mucha
- Wojciech Nadara
- Marcin Pilipczuk
- Manuel Sorge
- Piotr Wygocki

Thanks go to

• Networks for sponsoring the prizes

- Optil.io team, in particular to Jan Badura for hosting PACE'20 on their on-line judge system
- Felix Reidl for the PACE'20 poster

... and to the participants!

Country	Number of teams
Germany	4
Netherlands	4
Japan	2
United Kingdom	2
Brazil	1
Finland	1
France	1
India	1
Козоvо	1
Poland	1
Russia	1
Ukraine	1

- 20 teams officialy submitted
- 38 more registered users in the online judge system
- 51 participants
- 12 countries
- 3 continents

Treedepth

A treedepth decomposition of a connected graph G=(V,E) is a rooted tree T, V(T)=V, such that every edge of G connects a pair of nodes that have an ancestor-descendant relationship in T.

Treedepth of **G** = minimum depth of such **T**

Why treedepth?

A natural and useful notion in

- structural graph theory (sparsity),
- logic,
- FPT algortihms

What do we know about computing treedepth?

- DP over subsets of V, O(2^n) [folklore]
- DP over tree decomposition of width t O(2^{td(G)*t} poly(n) [Reidl et al. 2014]
- O(t*log^1.5 t)-approximation [Czerwiński et al. 2019, Kawarabayashi et al. 2018]
- in **P** for trees
- Computing treedepth of graphs up to 24 vtcs: reduction to ILP [Ganian et al. 2019]

Track A: Exact

Rules:

- Compute a tree decomposition of minimum depth in 30 minutes or give up.
- No formal proof of optimality required...
- ...but if your decomposition is suboptimal on any instance, you get disqualified.
- You are given 100 public instances.
- You are evaluated on 100 private instances.
- Score: number of instances solved; time as a tiebreaker

Our dataset for exact track

https://github.com/lkowalik/Treedepth-PACE-2020-instances

Results

Rank	Team	Institute	#pts	time
1	James Trimble	University of Glasgow (United Kingdom)	78	6503
2	Tuukka Korhonen	University of Helsinki (Finland)	77	5599
3	Ruben Brokkelkamp, Mees de Vries, Raymond van Venetië, Jan Westerdiep	CWI, U. Amsterdam, KdVI (Netherlands)	72	3149
4	Max Bannach, Sebastian Berndt, Martin Schuster, Marcel Wienöbst	Universität zu Lübeck, Universität Kiel (Germany)	72	4267
5	Dejun Mao, Vorapong Suppakitpaisarn, Zijian Xu	The University of Tokyo (Japan)	68	8794
6	Narek Bojikian, Alexander van der Grinten, Falko Hegerfeld, Laurence Alec Kluge, Stefan Kratsch	Humboldt-Universität zu Berlin (Germany)	64	4515
7	Tom van der Zanden	Maastricht University (Netherlands)	44	6304
8	Dmitry Sayutin (cdkrot)	ITMO University (Russia)	37	11465
9	Philip de Bruin, Erik Jan van Leeuwen (PhiliPdB)	Utrecht University (Netherlands)	27	4470
10	Jun Kawahara, Toshiki Saitoh, Akira Suzuki, Toshiyuki Takase, Katsuhisa Yamanaka (t-saitoh)	Kyoto University, Kyushu Institute of Technology, Tohoku University, Iwate University (Japan)	6	198

Closer look at the results

- The winning solver solved 78 instances
- 81 instances solved in total
- All instances up to 80 vertices solved
- The smallest treedepth of an **unsolved** instance is 17 (a 170 vertex road network)
- The largest treedepth of a **solved** instance was 83 (the 100 vertex Hall-Janko graph)

Table 2 Differences between the top five teams in the exact track (columns contain instances).

Name	068	074	084	088	090	094	108	112	120	148	150	174	180	182	186
Trimble	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	✓		\checkmark	\checkmark	
Korhonen	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Brokkelkamp et al.		\checkmark		\checkmark						\checkmark			\checkmark	\checkmark	\checkmark
Bannach et al.				\checkmark			\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	
Mao et al.		\checkmark									\checkmark				

Methods used

- Bottom-up (leaves to root): for increasing k=0,1,2... generate depth k tree decompositions of induced subgraphs of G (places 1,4,6,7)
- Top-down (root to leaves): list minimal separators, branch, memoize. (places 2,3,5,9,10)
- None of the approaches crushes the other
- The best solvers used a combination of **many** new and existing ideas

Talks of the five winning teams

IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

James Trimble

University of Glasgow

as the

First Place Winner in the Exact Track of the Treedepth Challenge

750 €

The Party of the P

NET WORKS

IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

Tuukka Korhonen

University of Helsinki

as the

2nd Place Winner in the Exact Track of the Treedepth Challenge

450 €

The Party of the P

Łukasz Kowalik, University of Warsaw. Track A Chair

THENETWORKCENTER.NL

5th Parameterized Algorithms and Computational Experiments Challenge (PACE) Uniting FPT and practice IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

Ruben Brokkelkamp*, Raymond van Venetië**, Mees de Vries**, Jan Westerdiep** *CWI, **U. Amsterdam

as the 3rd Place Winners in the Exact Track of the Treedepth Challenge

350 €

5th Parameterized Algorithms and Computational Experiments Challenge (PACE) Uniting FPT and practice IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

Max Bannach*, Sebastian Berndt*, Martin Schuster**, Marcel Wienöbst*

*Universität zu Lübeck, **Kiel University

4th Place Winner in the Exact Track of the Treedepth Challenge

250 €

The Party Name of Street or other

Łukasz Kowalik, University of Warsaw. Track A Chair

THENETWORKCENTER.NL

IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

Dejun Mao, Vorapong Suppakitpaisarn, Zijian Xu

The University of Tokyo

as the

5th Place Winner in the Exact Track of the Treedepth Challenge

200 €

The Party of Street or other

Track B: Heuristic

Rules:

- Compute a tree decomposition of small depth in 30 minutes.
- You are given 100 public instances.
- You are evaluated on 100 private instances.
- Score: 100*min/d for depth d
 - Does not award minor improvements much
 - Score is within (0,100]

Our dataset for heuristic track

https://github.com/lkowalik/Treedepth-PACE-2020-instances

Results

Rank	Team	Institute	#pts
1	Sylwester Swat	Poznań University Of Technology (Poland)	9710,9
2	Ben Strasser	— (Germany)	9684,1
3	Marcin Wrochna	University of Oxford (United Kingdom)	9591,2
4	James Trimble	University of Glasgow (United Kingdom)	9448
5	Max Bannach, Sebastian Berndt, Martin Schuster, Marcel Wienöbst	Universität zu Lübeck, Universität Kiel (Germany)	8935,6
6	Stéphane Grandcolas	LIS (France)	8880,6
7	Miguel Bosch Calvo, Giorgia Carranza Tejada, Dominik Jeurissen, Steven Kelk, Zhuoer Ma, Alexander Reisach, Borislav Slavchev	Maastricht University (Netherlands)	6320,2
8	Gabriel Duarte, Uéverton Souza, Samuel Silva	Fluminense Federal University (Brazil)	5068,5
9	Aman Singal	Indian Institute of Technology Dharwad (India)	4254,9
10	Oleg Evseev, Igor Kozin, Alexander Zemlyanskiy	Zaporizhzhya National University (Ukraine)	1071,7

Closer look at the results

- The winning solver was always within the ratio of 1.13 to the output of any other solver
- But each of the top 5 teams had an instance solved better than others

Methods used

• **Bottom-up** (leaves to root):

pick a vertex v (according to a heuristic measure), connect its neighbors to a clique, get a decomposition of *G-v*, add v to it (as a leaf). (places 2,3)

- **Top-down** (root to leaves): find a *nice* separator *S*, decompose each component of *G-S* recursively (places 2,5,7,8,9)
- Many solvers used a **portfolio of approaches** and output the best outcome
- Preprocessing not very popular, but 3 teams used **postprocessing** (simple imrovements in the resulting tree).
- Again, the best solvers used a combination of **many** ideas

Talks of the five winning teams

IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

Sylwester Swat

Poznań University Of Technology

as the First Place Winner in the Heuristic Track of the Treedepth Challenge

750 €

The Party of Street or other

Łukasz Kowalik, University of Warsaw. Track A Chair

THENETWORKCENTER.NL

IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

Ben Strasser

as the **2nd Place Winner in the Heuristic Track of the Treedepth Challenge**

450 €

The Party of Street or other

IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

Marcin Wrochna

University of Oxford

as the

3rd Place Winners in the Heuristic Track of the Treedepth Challenge

350 €

IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

James Trimble

University of Glasgow

as the

4th Place Winner in the Heuristic Track of the Treedepth Challenge

250 €

The Party Name of Street or other

5th Parameterized Algorithms and Computational Experiments Challenge (PACE) Uniting FPT and practice IPEC 2020 December 14 – 16 Hongkong

This is to certify that the 2020 PACE Program Committee has selected

Max Bannach*, Sebastian Berndt*, Martin Schuster**, Marcel Wienöbst*

*Universität zu Lübeck, **Kiel University

as the **5th Place Winner in the Heuristic Track of the Treedepth Challenge**

200 €

