

PACE 2025

Dominating Set and Hitting Set

Mario Grobler, Sebastian Siebertz September 18, 2025

History of PACE

Impact of PACE

Steering Committee

Max Bannach European Space Agency Sebastian Berndt Universität zu Lübeck

Holger Dell Goethe University Frankfurt and IT University of Copenhagen

Bart M. P. Jansen* Eindhoven University of Technology

Philipp Kindermann Universität Trier

André Nichterlein Technical University of Berlin

Christian Schulz Universität Heidelberg

Soeren Terziadis Eindhoven University of Technology

Former Members:

Łukasz Kowalik	(2020-2024)	Florian Sikora	(2017-2020)
Manuel Sorge	(2020-2024)	Petteri Kaski	(2016-2020)
Marcin Pilipczuk	(2021-2023)	Christian Komusiewicz	(2016-2020)
Johannes Fichte	(2020-2023)	Frances Rosamond	(2016-2019)
Markus Hecher	(2020-2023)	Thore Husfeldt	(2016-2019)
Édouard Bonnet	(2017-2021)		

Sponsors

We thank our sponsors for their generous support!

Networks for sponsoring the PACE 2025 prize money (4000€ in total).

THENETWORKCENTER.NL

Optil.io for providing the platform to run the challenge.

Data Science Center for providing the evaluation infrastructure.

PACE 2025

Problems:

- Dominating Set
- Hitting Set

Program Committee:

Sebastian Siebertz University of Bremen

Tracks:

- Exact
- Heuristic

Mario Grobler University of Bremen

Change and Continuity

Changes for PACE 2025:

- These year's problems are not fpt in general (but on many restricted classes)
- Increased memory limit: 8GB ightarrow 16GB
- Predefined Docker container to ensure uniform environment
- Dedicated reviewing phase to ensure correctness of solvers
 - ▷ Additional test set (thanks to Manuel Penschuck for Stride!)

Continuity:

- Two tracks: Exact and Heuristic
- Dedicated student rankings

The Tracks

Exact:

- Find an optimal solution
- Time limit: 30 minutes, memory limit: 16GB
- Scoring based on number of solved instances and time

Heuristic:

- Find a good solution (not necessarily optimal)
- Time limit: 5 minutes, memory limit: 16GB
- Scoring function:

$$f(k) = \left(\frac{u-k}{u-k^*}\right)^2$$
, where $u = \min\{n, 2k^*\}$,

k =solution size, $k^* =$ best known solution size, n =number of vertices

Problems

This year's iteration features **two problems**.

Dominating Set

Set $D \subseteq V(G)$ such that for all $v \in V(G)$ we have $N[v] \cap D \neq \emptyset$

Hitting Set

Set $H \subseteq V(S)$ such that for all $S \in E(S)$ we have $S \cap H \neq \emptyset$

Known Results: Dominating Set

Known Results: Hitting Set

Hitting Set generalizes many problems, including

- Vertex Cover (sets have size 2)
- Dominating Set (sets are closed neighborhoods)
- Feedback Vertex Set (sets are cycles)

Still, Dominating Set, Hitting Set and Set Cover are in a sense the same problem

Number of Participants

PACE 2025: 71 participants from 25 teams, 13 countries, and 3 continents

Solving Strategies – Exact Solvers

Employed Solving Strategies of exact solvers (grouped into nearest fitting category)

(RR: Reduction Rules, TW: Approach based on tree decompositions)

Solving Strategies – Heuristic Solvers

Employed Solving Strategies of heuristic solvers

CEGAR

Genetic Algorithm

Machine Learning

Reduction Rules Greedy
Local Search

Guided ILP

Large Neighborhood Search

Branch & Bound

Graph Origins

Dominating Set and Hitting Set combined, grouped by Exact and Heuristic Tracks

Graph Sizes by Origin

Number of vertices grouped by graph origin and track (logarithmic scale!)

Graph Sizes by Origin

Number of edges grouped by graph origin and track (logarithmic scale!)

Solved Instances by Time – Dominating Set Exact

(Disqualified teams are not shown)

Solved Instances by Time – Hitting Set Exact

(Disqualified teams are not shown)

Unsolved Instances

Unsolved instances "grouped" by origin

DS Exact Track – Ranking

OBLX

Score: 80

Time: 64579 s

Members:

- Jona Dirks
- Enna Gerhard
- Victoria Kaial
- Lucas Lorieau

2.

1.

Jona Dirks

Université Clermont-Auvergne

Enna Gerhard

University of Bremen

Victoria Kaial

Université Clermont-Auvergne

Lucas Lorieau

Université Clermont-Auvergne

for the

Third Place in the Dominating Set Exact Track

Mario Grobler, Universität Bremen 2025 PACE Program Committee Chair

DS Exact Track – Ranking

Bad DS Maker

Score: 80

Time: 50254 s

Members:

- Alexander Dobler
- Simon D. Fink
- Mathis Rocton

OBLX

Score: 80

Time: 64579 s

Members:

- Jona Dirks
- Enna Gerhard
- Victoria Kaial
- Lucas Lorieau

2.

1.

Alexander Dobler

Simon D. Fink

Mathis Rocton

Tu Wien

for the

Second Place in the Dominating Set Exact Track

Mario Grobler, Universität Bremen 2025 PACE Program Committee Chair

DS Exact Track – Ranking

Bad DS Maker

Score: 80

Time: 50254 s

Members:

- Alexander Dobler
- Simon D. Fink
- Mathis Rocton

UzL

Score: 81

Time: 46111 s

Members:

- Max Bannach
- Florian Chudigiewitsch
- Marcel Wienöbst

OBLX

Score: 80

Time: 64579s

Members:

- Jona Dirks
- Enna Gerhard
- Victoria Kaial
- Lucas Lorieau

2.

1.

Max Bannach
European Space Agency

Florian Chudigiewitsch
University of Lübeck

Marcel Wienöbst University of Lübeck

for the

First Place in the Dominating Set Exact Track

Mario Grobler, Universität Bremen 2025 PACE Program Committee Chair

DS Heuristic Track – Ranking

Swats

Score: 99.35

Members:

• Sylwester Swat

2.

1.

Sylwester Swat

Poznań University of Technology

for the

Third Place in the Dominating Set Heuristic Track

Mario Grobler, Universität Bremen 2025 PACE Program Committee Chair

DS Heuristic Track – Ranking

Root

Score: 99.64

Members:

- Canhui Luo
- Zhipeng Lv
- Zhouxing Su
- Qingyun Zhang

Swats

Score: 99.35

Members:

Sylwester Swat

2.

1.

Canhui Luo

Zhipeng Lv

Zhouxing Su

Qingyun Zhang

Huazhong University of Science and Technology

for the

Second Place in the Dominating Set Heuristic Track

Mario Grobler, Universität Bremen 2025 PACE Program Committee Chair

DS Heuristic Track – Ranking

Root

Score: 99.64
Members:

....

- Canhui Luo
- Zhipeng Lv
- Zhouxing Su
- Qingyun Zhang

Florian & Guillaume

Score: 99.81

Members:

- Florian Fontan
- Guillaume Verger

Swats

Score: 99.35

Members:

Sylwester Swat

2.

1.

Florian Fontan

Guillaume Verger

for the

First Place in the Dominating Set Heuristic Track

Mario Grobler, Universität Bremen 2025 PACE Program Committee Chair

HS Exact Track – Ranking

André Schidler

Score: 78

Time: 49566 s

Members:

• André Schidler

2.

1.

André Schidler

Albert-Ludwigs-Universität Freiburg

for the

Third Place in the Hitting Set Exact Track

Mario Grobler, Universität Bremen 2025 PACE Program Committee Chair

HS Exact Track – Ranking

Bad DS Maker

Score: 79

Time: 57783 s

Members:

- Alexander Dobler
- Simon D. Fink
- Mathis Rocton

André Schidler

Score: 78

Time: 49566 s

Members:

André Schidler

2.

1.

Alexander Dobler

Simon D. Fink

Mathis Rocton

Tu Wien

for the

Second Place in the Hitting Set Exact Track

Mario Grobler, Universität Bremen 2025 PACE Program Committee Chair

HS Exact Track – Ranking

Bad DS Maker

Score: 79

Time: 57783 s
Members:

- Alexander Dobler
- Simon D. Fink
- Mathis Rocton

UzL

Score: 79

Time: 49854 s

Members:

- Max Bannach
- Florian Chudigiewitsch
- Marcel Wienöbst

André Schidler

Score: 78

Time: 49566 s

Members:

André Schidler

2.

1.

Max Bannach
European Space Agency

Florian Chudigiewitsch
University of Lübeck

Marcel Wienöbst University of Lübeck

for the

First Place in the Hitting Set Exact Track

HS Heuristic Track – Ranking

Shadoks

Score: 99.21

Members:

- Guilherme D. da Fonseca
- Fabien Feschet
- Yan Gerard

2.

1.

Guilherme D. da Fonseca

Fabien Feschet

Yan Gerard

Aix-Marseille Université

Université Clermont-Auvergne

Université Clermont-Auvergne

for the

Third Place in the Hitting Set Heuristic Track

HS Heuristic Track – Ranking

Florian & Guillaume

Score: 99.73

Members:

- Florian Fontan
- Guillaume Verger

Shadoks

Score: 99.21

Members:

- Guilherme D. da Fonseca
- Fabien Feschet
- Yan Gerard

2.

1.

Florian Fontan

Guillaume Verger

for the

Second Place in the Hitting Set Heuristic Track

HS Heuristic Track – Ranking

Florian & Guillaume

Score: 99.73

Members:

- Florian Fontan
- Guillaume Verger

Root

Score: 99.79

Members:

- Canhui Luo
- Zhipeng Lv
- Zhouxing Su
- Qingyun Zhang

Shadoks

Score: 99.21

Members:

- Guilherme D. da Fonseca
- Fabien Feschet
- Yan Gerard

2.

1.

Canhui Luo

Zhipeng Lv

Zhouxing Su

Qingyun Zhang

Huazhong University of Science and Technology

for the

First Place in the Hitting Set Heuristic Track

DS Exact Track – Student Ranking

Floris

Score: 62

Time: 92309 s **Members:**

Members.

• Floris van der Hout

2.

1.

Floris van der Hout

Utrecht University

for the

Third Student Place in the Dominating Set Exact Track

DS Exact Track – Student Ranking

Tobias Röhr

Score: 76

Time: 50057 s

Members:

Tobias Röhr

Floris

Score: 62

Time: 92309 s

Members:

• Floris van der Hout

2.

1.

Tobias Röhr

Hasso Plattner Institut

for the

Second Student Place in the Dominating Set Exact Track

DS Exact Track – Student Ranking

Tobias Röhr

Score: 76

Time: 50057 s

Members:

Tobias Röhr

OBLX

Score: 80

Time: 64579 s

Members:

- Jona Dirks
- Enna Gerhard
- Victoria Kaial
- Lucas Lorieau

Floris

Score: 62

Time: 92309 s

Members:

• Floris van der Hout

2.

1.

Jona Dirks

Université Clermont-Auvergne

Enna Gerhard

University of Bremen

Victoria Kaial

Université Clermont-Auvergne

Lucas Lorieau

Université Clermont-Auvergne

for the

First Student Place in the Dominating Set Exact Track

DS Heuristic Track – Student Ranking

Hui, Bo, Yexin, Xinyun

Score: 96.16

Members:

• Hui Kong

• Bo Peng

• Yexin Peng

• Xinyun Wu

2.

1.

Hui Kong

Hubei University of Technology

Bo Peng

Hubei University of Technology

Yexin Peng

Hubei University of Technology

Xinyun Wu

Southwestern U. of Financy and Economics

for the

Third Student Place in the Dominating Set Heuristic Track

DS Heuristic Track – Student Ranking

Viacheslav

Score: 96.27

Members:

• Viacheslav Khrushchev

Hui, Bo, Yexin, Xinyun

Score: 96.16

Members:

- Hui Kong
- Bo Peng
- Yexin Peng
- Xinyun Wu

2.

1.

Viacheslav Khrushchev

HSE University Moscow

for the

Second Student Place in the Dominating Set Heuristic Track

DS Heuristic Track – Student Ranking

Viacheslav

Score: 96.27

Members:

Viacheslav Khrushchev

Samuel

Score: 96.80

Members:

Samuel Füßinger

Hui, Bo, Yexin, Xinyun

Score: 96.16

Members:

- Hui Kong
- Bo Peng
- Yexin Peng
- Xinyun Wu

2.

1.

Samuel Füßinger

Eberhard Karls Universität Tübingen

for the

First Student Place in the Dominating Set Heuristic Track

HS Exact Track – Student Ranking

AEG Heidelberg

Score: 63

Time: 77045 s

Members:

- Adil Chhabra
- Marlon Dittes
- Ernestine Großmann
- Kenneth Langedal
- Henrik Reinstädtler
- Christian Schulz
- Darren Strash
- Henning Woydt

Adil Chhabra
Heidelberg University

Marlon Dittes
Heidelberg University

Ernestine Großmann
Heidelberg University

Kenneth Langedal Heidelberg University

Henrik Reinstädtler Heidelberg University **Christian Schulz**

Heidelberg University Hamilton College

Henning Woydt
Heidelberg University

for the

Second Student Place in the Hitting Set Exact Track

Mario Grobler, Universität Bremen
2025 PACE Program Committee Chair

Darren Strash

HS Exact Track – Student Ranking

AEG Heidelberg

Score: 63

Time: 77045 s

Members:

- Adil Chhabra
- Marlon Dittes
- Ernestine Großmann
- Kenneth Langedal
- Henrik Reinstädtler
- Christian Schulz
- Darren Strash
- Henning Woydt

Tobias

Score: 76

Time: 50947 s

Members:

Tobias Röhr

Tobias Röhr

Hasso Plattner Institut

for the

First Student Place in the Hitting Set Exact Track

HS Heuristic Track – Student Ranking

Sebastian, Mirza, Patrick & Mariette

Score: 1.83 Members:

- Sebastian Angrick
- Mirza Redzic
- Patrick Steil
- Mariette Vasen

2.

Sebastian Angrick

Mirza Redzic

Patrick Steil

Mariette Vasen

Karlsruhe Institute of Technology

for the

Second Student Place in the Hitting Set Heuristic Track

HS Heuristic Track – Student Ranking

Sebastian, Mirza, Patrick & Mariette

Score: 1.83
Members:

- Sebastian Angrick
- Mirza Redzic
- Patrick Steil
- Mariette Vasen

Deepak, Syed, Kabir & Saurabh

Score: 82.50

Members:

- Deepak Ajwani
- Syed Mahmudul
- Kabir Ratul
- Saurabh Ray

2.

Deepak Ajwani University College Dublin Syed Mahmudul Kabir Ratul New York University Abu Dhabi Saurabh Ray
New York University Abu Dhabi

for the

First Place in the Hitting Set Heuristic Track

Lessons Learned

- Finding good benchmark instances is hard
- Discrepancy between preliminary and final test set
- Installing the solvers in Docker containers was time-consuming, but eventually worth the effort
- The reviewing phase helped to identify bugs in the solvers
- Making a schedule is easy, sticking to it is hard

PACE

Preview: PACE 2026

Alexander Leonhardt¹, Manuel Penschuck², Mathias Weller³

¹Goethe-Universität Frankfurt, Germany
²University of Southern Denmark, Odense, Denmark
³CNRS, Université Gustave Eiffel, Paris, France
https://pacechallenge.org/

Definition

► A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.

Definition

- ▶ A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \dots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+ "cleanup")

Definition

- ► A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \dots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+ "cleanup")

Definition

- ► A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \dots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+ "cleanup")
- ► The number of phylogenetic trees in an agreement forest *F* is called its size. If *F* has minimum size (maximizes the agreement), it is called a maximum-agreement forest.

Definition

- A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \dots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+"cleanup")
- ▶ The number of phylogenetic trees in an agreement forest *F* is called its size. If *F* has minimum size (maximizes the agreement), it is called a maximum-agreement forest.

Results for t = 2, MAF(T, T') = k

- ► NP-hard Bordewich & Semple, '04
- $O(2.35^k n)$ time Chen & Wang, '13 $O(2^k n)$ time claimed Whidden, '13
- ▶ problem kernel with 28k taxa

Bordewich & Semple, '05

Definition

- ▶ A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \dots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+"cleanup")
- ► The number of phylogenetic trees in an agreement forest *F* is called its size. If *F* has minimum size (maximizes the agreement), it is called a maximum-agreement forest.

Results for t = 2, MAF(T, T') = k

- ► NP-hard Bordewich & Semple, '04
- $O(2.35^k n)$ time Chen & Wang, '13 ($O(2^k n)$ time claimed) Whidden, '13
- ▶ problem kernel with 28k taxa

Bordewich & Semple, '05

Results for MAF $(T_1, T_2, ..., T_t) = k$

 $O(3^k n^2 t)$ time Shi et al. '14 $O(2.42^k n^4 t^3)$ time Shi et al. '18

Definition

- ▶ A phylogenetic tree is a rooted, bijectively leaf-labelled out-branching.
- An agreement forest of t phylogenetic trees T_1, T_2, \dots, T_t is any forest of phylogenetic trees that can be obtained from each T_i by removing directed edges (+"cleanup")
- ► The number of phylogenetic trees in an agreement forest *F* is called its size. If *F* has minimum size (maximizes the agreement), it is called a maximum-agreement forest.

Results for t = 2, MAF(T, T') = k

- ► NP-hard Bordewich & Semple, '04
- $O(2.35^k n)$ time Chen & Wang, '13 $O(2^k n)$ time claimed Whidden, '13
- ▶ problem kernel with 28k taxa

Bordewich & Semple, '05

Results for MAF $(T_1, T_2, ..., T_t) = k$

 $O(3^k n^2 t)$ time Shi et al. '14 $O(2.42^k n^4 t^3)$ time Shi et al. '18

Note: No other parameterization explored!

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Heuristic Track

- ▶ 2 trees
- as usual

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Heuristic Track

- 2 trees
- as usual

Lower Bound Track

- 2 trees
- idea: score depends on quality and runtime
- ▶ idea: reach approximation as fast as possible

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Heuristic Track

- ▶ 2 trees
- as usual

Lower Bound Track

- 2 trees
- idea: score depends on quality and runtime
- idea: reach approximation as fast as possible

Real-World Data

expect few trees, small MAF, many leaves

Exact/Parameterized Track

- t trees
- idea: instances accompanied by parameters (with proof, e.g. decomposition)
- committee takes requests for parameters in the first months
- parameter statistics of hidden instances available in advance

Heuristic Track

- ▶ 2 trees
- as usual

Lower Bound Track

- 2 trees
- idea: score depends on quality and runtime
- ▶ idea: reach approximation as fast as possible

Real-World Data

expect few trees, small MAF, many leaves

Generated Data

expect many trees, large MAF, many leaves

Timeline

mostly follows previous PACE-instances

September '25 Announcement of the challenge and tracks
October '25 Definition of input and output formats
November '25 Tiny test set and verifier are provided
January '26 Release of public instances and details about the benchmark
April '26 Submission via optil.io opens
July '26 Final submission deadline and results

Timeline

mostly follows previous PACE-instances

September '25 Announcement of the challenge and tracks
October '25 Definition of input and output formats
November '25 Tiny test set and verifier are provided
January '26 Release of public instances and details about the benchmark
April '26 Submission via optil.io opens
July '26 Final submission deadline and results

good luck and an enjoyable competition –