3rd Parameterized Algorithms & Computational Experiments Challenge

Where it came from, how it went, who won, and what's next

August 22nd, IPEC 2018, Helsinki, Finland

History of PACE

PACE was conceived in Fall 2015, borne from the feeling that:

"parameterized algorithmics should have a greater impact on practice"

Inspired by success of SAT-solving competitions

2015-2016: First iteration

- Track A: TREEWIDTH
- Track B: FEEDBACK VERTEX SET

2016-2017: Second iteration

- Track A: TREEWIDTH
- Track B: MINIMUM FILL-IN

2017-2018: Third iteration [STEINER TREE]

Goals

Investigate the applicability of algorithmic ideas from parameterized algorithmics

- 1. provide bridge between algorithm theory and algorithm engineering practice
- 2. inspire new theoretical developments
- 3. investigate the competitiveness of analytical and design frameworks
- 4. produce universally accessible libraries of implementations & benchmark inputs
- 5. encourage dissemination of the findings in scientific papers

SAT-Encodings of Tree Decompositions

Max Bannach Institute for Theoretical Computer Science Universität zu Lübeck Email: bannach@tcs.uni-luebeck.de Sebastian Berndt, Thorsten Ehlers and Dirk Nowotka Department of Computer Science University of Kiel Email: {seb,the,dn}@informatik.uni-kiel.de

SA	AT-Encodings of	of Tree Decompositions				
τ	Max Bannach r Theoretical Computer Science Jniversität zu Lübeck	Sebastian Berndt, Thorsten Ehlers and Dirk Nowotka Department of Computer Science University of Kiel				
Email:		reewidth as a practical component of based quantum simulation				
		Eugene F. Dumitrescu ^{1, †} , Allison L. Fisher ² , Timothy D. Goodrich ^{2, *} , Travis S. Humble ^{1, †} , Blair D. Sullivan ² , Andrew L. Wright ²				

SA	AT-Encodings (Max Bannach	of Tree Decomposition Sebastian Berndt, Thorsten Ehlers and Dirk		
U	Theoretical Computer Science Iniversität zu Lübeck	Department of Computer Science University of Kiel	An S	SMT Approach to
Email:	tensor-network Eugene F. Dumitrescu	reewidth as a practical component based quantum simulation a ^{1, †} , Allison L. Fisher ² , Timothy D. Goodric ullivan ² , Andrew L. Wright ²	Frac Wid	ctional Hypertree 1th
				nes K. Fichte, Markus Hecher, Lodha, and Stefan Szeider

Institute for	AT-Encodings (Max Bannach Theoretical Computer Science Universität zu Lübeck	of Tree Decompose Sebastian Berndt, Thorsten Ehlers Department of Computer University of Kie	Computation and Growth of Road Network Dimensions	
Email:	tensor-network– Eugene F. Dumitrescu	reewidth as a practical cor based quantum simulation ^{1,†} , Allison L. Fisher ² , Timothy D. ullivan ² , Andrew L. Wright ²	Johannes Blum ^(⊠) and Sabine Storandt stitut für Informatik, Julius-Maximilians-Universität Würzbur Würzburg, Germany {blum,storandt}@informatik.uni-wuerzburg.de	rg,
			Johannes K. Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider	

Universität zu Lübeck Un	1		omputation and Growth of Road Network Dimensions
Email: Benchmarking treewidth as a pratemory tensor-network-based quantum si Computing Tree Width: From Theory to Practice and Back	ctical cor imulation Timothy D. ght ²	Institu	Johannes Blum ^(⊠) and Sabine Storandt ut für Informatik, Julius-Maximilians-Universität Würzburg, Würzburg, Germany {blum,storandt}@informatik.uni-wuerzburg.de
Sebastian Berndt ^(⊠) Department of Computer Science, Kiel University, Kiel, Germany seb@informatik.uni-kiel.de			Johannes K. Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider

Max Bannach Institute for Theoretical Con Universität zu Lüb	nputer Science Departmen	-	Computation a	and Growth of Road k Dimensions
Computing Tree	hmarking treewidth as a pra or-network–based quantum si Width: From Theory tice and Back		Institut für Informatik, Juliu Würz	^(⊠) and Sabine Storandt us-Maximilians-Universität Würzburg, burg, Germany nformatik.uni-wuerzburg.de
Seba Department of Computer S seb@info	Experimental Evaluation of Krzysztof Kil	Vertex Set*	0	back Hecher,

stitute for	Weighted Model Counting on the GPU by Exploiting Small Treewidth	Computation and Growth of Road Network Dimensions
t Email:	Johannes K. Fichte International Center for Computational Logic, TU Dresden, 01062 Dresden, Germany johannes.fichte@tu-dresden.de https://orcid.org/0000-0002-8681-7470	Johannes Blum ^(\boxtimes) and Sabine Storandt
ompur	Markus Hecher Institute of Logic and Computation, TU Wien, Favoritenstraße 9-11, 1040 Wien, Austria hecher@dbai.tuwien.ac.at bhttps://orcid.org/0000-0003-0131-6771	Institut für Informatik, Julius-Maximilians-Universität Würzb Würzburg, Germany {blum,storandt}@informatik.uni-wuerzburg.de
I	Stefan Woltran Institute of Logic and Computation, TU Wien, Favoritenstraße 9-11, 1040 Wien, Austria woltran@dbai.tuwien.ac.at bhttps://orcid.org/0000-0003-1594-8972	
artment	Markus Zisser Institute of Logic and Computation, TU Wien, Favoritenstraße 9-11, 1040 Wien, Austria markus.zisser@student.tuwien.ac.at	d Algorithms for Feedback

People behind PACE

Program committee chairs for 2017-2018:

Édouard Bonnet Florian Sikkora

Steering committee

Holger DellsBart M. P. Jansen*EThore HusfeldtIPetteri KaskiAChristian KomusiewiczFFrances A. RosamondL

Saarland Informatics Campus Eindhoven University of Technology ITU Copenhagen and Lund University Aalto University Philipps-Universität Marburg University of Bergen

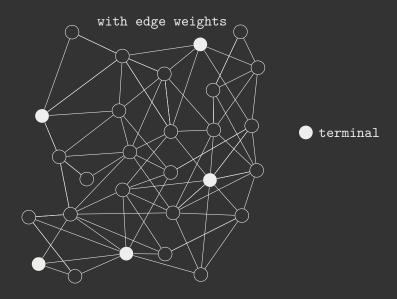
ENS de Lyon

Université Paris-Dauphine

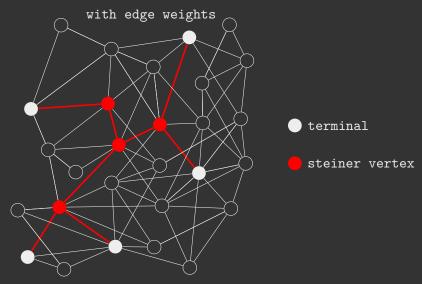
Sponsors for prizes & travel

NETWORKS is a project of University of Amsterdam Eindhoven University of Technology Leiden University Center for Mathematics and Computer Science (CWI)

TheNetworkCenter.nl


Systemberatung Softwareentwicklung Informationsverarbeitung

HOW IT WENT & WHO WON


>>> The 3rd Parameterized Algorithms and Computational Experiments Challenge: Steiner Tree

Name: <u>Édouard Bonnet</u> and Florian Sikora (ENS de Lyon and Université Paris-Dauphine) Date: August 22nd 2018, Helsinki

>>> Challenge Problem: Steiner Tree

>>> Challenge Problem: Steiner Tree

find the lightest tree spanning the terminals

>>> Why Steiner Tree?

- * Real-life applications: design of VLSI, optical and wireless communication systems, transport networks.
- * Among Karp's 21 NP-complete problems: one of the most fundamental graph problems
- * Established benchmark and strong programs: 11th DIMACS implementation challenge

>>> Why Steiner Tree?

- Real-life applications: design of VLSI, optical and wireless communication systems, transport networks.
- * Among Karp's 21 NP-complete problems: one of the most fundamental graph problems
- * Established benchmark and strong programs: 11th DIMACS implementation challenge
- * and, of course, fixed-parameter algorithms

>>> Choice of the tracks

- n: number of vertices
- m: number of edges
- t: number of terminals

Algorithms:

* Dreyfus-Wagner, Erickson-Monma-Veinott $3^t n + 2^t (n \log n + m)$

Tracks:

* Track A, few terminals

>>> Choice of the tracks

- n: number of vertices
- m: number of edges
- t: number of terminals
- w: treewidth

Algorithms:

- * Dreyfus-Wagner, Erickson-Monma-Veinott $3^t n + 2^t (n \log n + m)$
- st DP $O^st(w^w)$, improved to $2^{O(w)}n$ by the rank-based approach

Tracks:

- * Track A, few terminals
- * Track B, low treewidth

>>> Choice of the tracks

- n: number of vertices
- m: number of edges
- t: number of terminals
- w: treewidth

Algorithms:

- * Dreyfus-Wagner, Erickson-Monma-Veinott $3^t n + 2^t (n \log n + m)$
- \ast DP $O^{st}(w^w)$, improved to $2^{O(w)}n$ by the rank-based approach
- * constant approximations, fixed-parameter approximations

Tracks:

- * Track A, few terminals
- * Track B, low treewidth
- * Track C, heuristics

>>> Instances

100 public and 100 private instances (from Steinlib & Vienna)

- st grid graphs with rectangular holes and ℓ_1 -weights
- * Wire-routing problems from industry
- * random sparse instances resistent to preprocessing
- * Rectilinear instances with low treewidth
- * Real-world telecommunication networks

>>> Instances and rules

100 public and 100 private instances (from Steinlib & Vienna)

- $m{*}$ grid graphs with rectangular holes and $\ell_1 ext{-weights}$
- * Wire-routing problems from industry
- * random sparse instances resistent to preprocessing
- * Rectilinear instances with low treewidth
- * Real-world telecommunication networks

Rules:

- * All tracks: 30 minutes per instance, final score on the 100 private instances
- * Tracks A and B: number of solved instances
- * Track C: sum of the ratios opt/sol

A wrong answer disqualifies in Tracks A and B, and gives 0 for that instance in Track C

>>> Selection of the instances

- * Track A: few terminals, high treewidth
- * Track B: low treewidth, many terminals
- * Track C: many terminals, high treewidth, unsolved

Track	$\mathbb{E}[n]$	$\mathbb{E}[m]$	$\mathbb{E}[t]$	median t	$\mathbb{E}[w]$	median w
A	1.5K	8.5K	19.4	16	pprox 100	pprox 25
В	1.5K	2.8K	606	100	14.9	19.5
C	27K	48K	1114	360	pprox 150	pprox 50

In Track B, a tree-decomposition was given with the input computed by Tamaki's and Strasser's codes of PACE 2017

>>> The OPTIL.io platform hosted all three tracks

- * Many languages supported; added more upon request
- * Extra PACE participants among the OPTIL.io habitués
- * Alleviates our workload in organizing PACE

O	DPTIL.IO ABOUT - CONTESTS - PROBLEMS STANDING															
_	OPTIMAL STEINER TREE: PACE 2018 C															
ву	Florian Sikora ¹ , Edouard B	onnet-														
	ESCRIPTION RUNS	STANDING	SUBN		uss											
_		JI														
	= Time Limit Exceeded, WA	= Wrong Answer, I	RTE = Ru	ntime Error, I	MLE = Mem	ory Limit Exce	eded, OLE =	Output Lim	it Exceeded, PLE	= Processes Li	mit Exce	eded, more				
hel)															
F	irst 1 Last						First 1 Last									
	USER	LANGUAGE	SCORE	TIME (S)	1	2	3	4	5	6	7	8				
•	USER CIMAT_Team	LANGUAGE		TIME [S] 180,011.54		2 23,765.00			5 13,309,487.00	6 50,605.00		8				
					15,076.00		27,684.00	20,678.00		50,605.00	75.00					
1	CIMAT_Team	C++	99.91	180,011.54	15,076.00 15,076.00	23,765.00	27,684.00 27,685.00	20,678.00	13,309,487.00 13,309,487.00	50,605.00 50,617.00	75.00 75.00	14,171,206.0				
1 2	CIMAT_Team reko	C++ Static binary	99.91 99.89 99.78	180,011.54 107,315.80	15,076.00 15,076.00 15,076.00	23,765.00 23,765.00	27,684.00 27,685.00 27,684.00	20,678.00 20,678.00 20,678.00	13,309,487.00 13,309,487.00	50,605.00 50,617.00 50,559.00	75.00 75.00 75.00	14,171,206.0 14,171,206.0				
1 2 3	CIMAT_Team reko Martin_J_Geiger	C++ Static binary VB.NET	99.91 99.89 99.78 99.70	180,011.54 107,315.80 150,654.81	15,076.00 15,076.00 15,076.00 15,076.00	23,765.00 23,765.00 23,765.00	27,684.00 27,685.00 27,684.00 27,684.00	20,678.00 20,678.00 20,678.00 20,678.00	13,309,487.00 13,309,487.00 13,309,487.00	50,605.00 50,617.00 50,559.00 50,656.00	75.00 75.00 75.00 75.00	14,171,206.0 14,171,206.0 14,171,206.0				
1 2 3 4	CIMAT_Team reko Martin_J_Geiger Tarken	C++ Static binary VB.NET CMake package	99.91 99.89 99.78 99.70 99.63	180,011.54 107,315.80 150,654.81 177,706.78	15,076.00 15,076.00 15,076.00 15,076.00 15,076.00	23,765.00 23,765.00 23,765.00 23,765.00	27,684.00 27,685.00 27,684.00 27,684.00 27,684.00	20,678.00 20,678.00 20,678.00 20,678.00 20,719.00	13,309,487.00 13,309,487.00 13,309,487.00 13,309,487.00	50,605.00 50,617.00 50,559.00 50,656.00 50,639.00	75.00 75.00 75.00 75.00 75.00	14,171,206.0 14,171,206.0 14,171,206.0 14,171,206.0				
1 2 3 4 5	CIMAT_Team reko Martin_I_Geiger Tarken mucha	C++ Static binary VB.NET CMake package C++	99.91 99.89 99.78 99.70 99.63 99.32	180,011.54 107,315.80 150,654.81 177,706.78 179,328.03	15,076.00 15,076.00 15,076.00 15,076.00 15,076.00 15,076.00	23,765.00 23,765.00 23,765.00 23,765.00 23,765.00	27,684.00 27,685.00 27,684.00 27,684.00 27,684.00 27,684.00	20,678.00 20,678.00 20,678.00 20,678.00 20,719.00 20,678.00	13,309,487.00 13,309,487.00 13,309,487.00 13,309,487.00 13,309,487.00 13,309,487.00	50,605.00 50,617.00 50,559.00 50,656.00 50,639.00 50,559.00	75.00 75.00 75.00 75.00 75.00 75.00	14,171,206.0 14,171,206.0 14,171,206.0 14,171,206.0 14,171,774.0				
1 2 3 4 5 6	CIMAT_Team reko Martin_J_Geiger Tarken mucha Gardeners	C++ Static binary VB.NET CMake package C++ Static binary	99.91 99.89 99.78 99.70 99.63 99.32 99.12	180,011.54 107,315.80 150,654.81 177,706.78 179,328.03 134,615.66	15,076.00 15,076.00 15,076.00 15,076.00 15,076.00 15,076.00	23,765.00 23,765.00 23,765.00 23,765.00 23,765.00 23,765.00	27,684.00 27,685.00 27,684.00 27,684.00 27,684.00 27,684.00	20,678.00 20,678.00 20,678.00 20,678.00 20,719.00 20,678.00 20,721.00	13,309,487.00 13,309,487.00 13,309,487.00 13,309,487.00 13,309,487.00 13,309,487.00	50,605.00 50,617.00 50,559.00 50,656.00 50,639.00 50,559.00 51,111.00	75.00 75.00 75.00 75.00 75.00 75.00 75.00	14,171,206.0 14,171,206.0 14,171,206.0 14,171,206.0 14,171,206.0 14,171,774.0				

Many thanks to Szymon Wasik and Jan Badura!

Country	Teams	Participants
Austria	2	4
Brazil	1	3
Canada	1	1
Czechia	2	4
Denmark	1	1
England	1	1
Finland	1	1
France	4	7
Germany	4	5
India	6	12
Japan	4	8
Mexico	1	4
Netherlands	2	6
Norway	2	4
Poland	2	11
Romania	1	3

>>> Participation

Complete	
submissi	ons
Track A:	12
Track B:	8
Track C:	13

>>> Implementations

A lot of preprocessing and...

FPT algorithms:

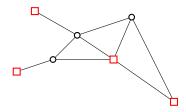
- * DW(++)/EMV(++): 1st, 2nd, 4th to 9th in Track A, 2nd, 3rd, 4th in Track B
- * DP $O^*(w^w)$: 2nd in Track B
- * rank-based approach: 3rd to 8th in Track B solved instances that were not solved by other programs
- * FPT approximation: 4th Track C

or other approaches:

- * Branch-and-Cut: 3rd in Track A, 1st in B, 2nd in C
- * Evolutionary algorithm: 1st in Track C
- * Iterated local search with noising: 3rd in Track C

SCIP-Jack: A general Steiner tree solver

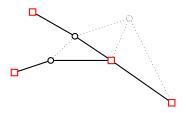
Daniel Rehfeldt · Thorsten Koch Zuse Institute Berlin Technische Universität Berlin Berlin Mathematical School



IPEC, Helsinki, August 2018

The Steiner tree problem in graphs

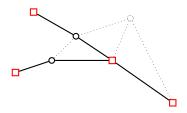
Given:


- \triangleright G = (V, E): undirected graph
- \triangleright $T \subseteq V$: subset of vertices
- $\triangleright \ c \in \mathbb{R}^{E}_{>0}$: positive edge costs

The Steiner tree problem in graphs

Given:

- \triangleright G = (V, E): undirected graph
- \triangleright **T** \subseteq **V**: subset of vertices
- $\triangleright \ c \in \mathbb{R}^{E}_{>0}$: positive edge costs



A tree $S \subseteq G$ is called Steiner tree in (G, T, c) if $T \subseteq V(S)$

The Steiner tree problem in graphs

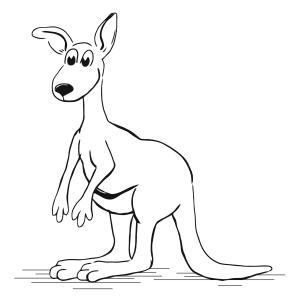
Given:

- \triangleright G = (V, E): undirected graph
- \triangleright $T \subseteq V$: subset of vertices
- $\triangleright \ c \in \mathbb{R}^{E}_{>0}$: positive edge costs

A tree $S \subseteq G$ is called Steiner tree in (G, T, c) if $T \subseteq V(S)$

Steiner tree Problem in Graphs (SPG)

Find a Steiner tree S in (G, T, c) with minimum edge costs $\sum_{e \in E(S)} c(e)$

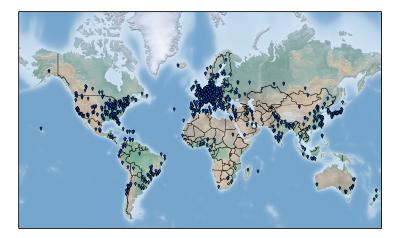

SPG is one of the classical combinatorial optimization problems; decision variant is one of Karp's 21 \mathcal{NP} -complete problems.

SCIP-Jack:

- ▷ Solver for Steiner tree (and 11 related) problems
- part of the SCIP Optimization Suite
- ▷ was used with our LP solver SoPlex¹ (default is CPLEX)

¹current developers: Leon Eifler, Matthias Miltenberger, D.R.

Framework



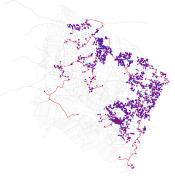
Some facts about SCIP

\triangleright general setup

- plugin based system
- default plugins handle MIPs and nonconvex MINLPs
- support for branch-and-price and custom relaxations
- $\triangleright~$ documentation and guidelines
 - ▶ more than 500 000 lines of C code, 20% documentation
 - ► 36 000 assertions, 5 000 debug messages
 - HowTos: plugins types, debugging, automatic testing
 - 11 examples and 5 applications illustrating the use of SCIP
 - active mailing list scip@zib.de (300 members)
- ▷ interface and usability
 - user-friendly interactive shell
 - interfaces to AMPL, GAMS, ZIMPL, MATLAB, Python and Java
 - C++ wrapper classes
 - LP solvers: CLP, CPLEX, Gurobi, MOSEK, QSopt, SoPlex, Xpress
 - over 1600 parameters and 15 emphasis settings

(Some) SCIP users all over the world

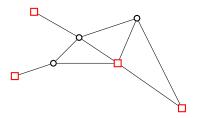
over 10 000 downloads per year

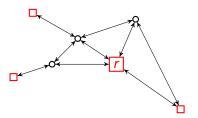

Why not using a general MIP solver?

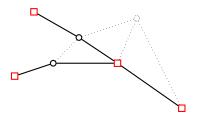
Consider (small-scale) network design instance with:

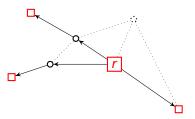
$$|V| = 12715$$

 $|E| = 41264$
 $|T| = 475$


- CPLEX 12.7.1: Runs out of memory after 14 h
- SCIP-Jack: Solves to optimality in 7.5 seconds


For larger problems CPLEX runs out of memory almost immediately (largest real-world instance SCIP-Jack solved so far has 64 million edges, 11 million vertices)


Network telecommunication design for Austrian cities, see *New Real-world Instances for the Steiner Tree Problem in Graphs* (Leitner et al., 2014)


 \triangleright transform each SPG into Steiner arborescence problem and \ldots

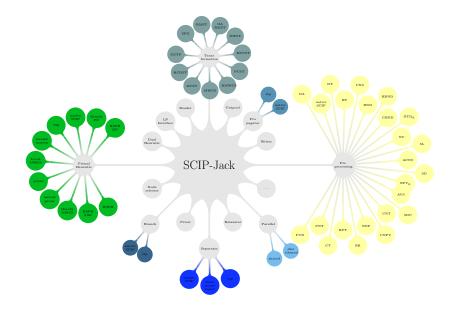
 \triangleright transform each SPG into Steiner arborescence problem and \ldots

... use cutting plane algorithm based on flow balance directed-cut formulation:

Formulation

$$\begin{array}{ll} \min c^{T} y \\ y(\delta_{W}^{+}) \geq 1 & \text{for all } W \subset V, r \in W, (V \setminus W) \cap T \neq \emptyset \\ y(\delta_{v}^{-}) \leq y(\delta_{v}^{+}) & \text{for all } v \in V \setminus T \\ y(\delta_{v}^{-}) \geq y(a) & \text{for all } a \in \delta_{v}^{+}, v \in V \setminus T \\ y(a) \in \{0,1\} & \text{for all } a \in A \end{array}$$

main features of SCIP-Jack for SPGs:

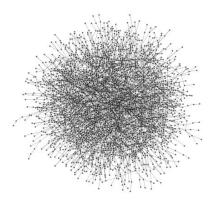

²Latest version was not used at PACE 2018

main features of SCIP-Jack for SPGs:

- \triangleright very fast separator routine based on new max-flow implementation²
- preprocessing routines
- b domain propagation routines
- ▷ primal and dual heuristics
- shared and distributed memory parallelizations

²Latest version was not used at PACE 2018

SCIP-Jack



Central feature: Reduction techniques

- reduction techniques try to transform an instance to an equivalent smaller one (e.g. by deleting edges or vertices)
- $\triangleright\,$ reduction techniques of SCIP-Jack typically reduce # edges by more than 70 %

Central feature: Reduction techniques

- reduction techniques try to transform an instance to an equivalent smaller one (e.g. by deleting edges or vertices)
- $\triangleright\,$ reduction techniques of SCIP-Jack typically reduce # edges by more than 70 %

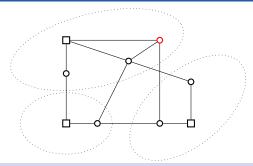
original instance (5000 edges)

Terminal regions decomposition

Example for (new) SPG reduction technique, implemented for PACE 2018:

Example for (new) SPG reduction technique, implemented for PACE 2018:

Define distance function $\underline{d}: V \times V \mapsto \mathbb{R} \cup \{\infty\}$:


 $\underline{d}(v_i, v_j) := \inf\{P(Q) \mid Q \text{ is a } (v_i, v_j)\text{-path and } (V(Q) \setminus \{v_i, v_j\}) \cap T = \emptyset\}$

Define decomposition $H = \{H_{t_i} \subseteq V \mid T \cap H_{t_i} = \{t_i\}\}$ of V such that for each $t_i \in T$ the subgraph $(H_{t_i}, E[H_{t_i}])$ is connected.

Define radius:

$$r_{H}(t_{i}) := \min\{\underline{d}(t_{i}, v_{k}) \mid \exists\{v_{j}, v_{j}\} \in E, v_{j} \in H_{t_{i}}, v_{k} \notin H_{t_{i}}\}$$

Terminal regions decomposition (2)

Proposition

Let *H* be a terminal regions decomposition and assume that $|T| \ge 2$. Let $v_i \in V \setminus T$, assume for each optimal solution *S* that $v_i \in V(S)$. Then

$$\sum_{t\in T} r_H(t) - \max\{r_H(t) + r_H(t') \mid t, t' \in T, t \neq t'\} + \underline{d}(v_i, \underline{v}_{i,1}) + \underline{d}(v_i, \underline{v}_{i,2})$$

is lower bound on the weight of S.

Finding an optimal terminal regions decomposition is NP-hard!

Thorsten Koch · Daniel Rehfeldt

Using reduction techniques in domain propagation

Each SCIP-Jack Steiner tree reduction transforms SPG (V, E, T, c) to SPG (V', E', T', c') and provides function $p : E' \to \mathcal{P}(E)$ such that for each (optimal) solution $S' \subseteq E'$ to transformed problem, set $\bigcup_{e \in S'} p(e)$ is (optimal) solution to original problem.

Observation

Let (V, E, T, c), (V', E', T', c'), and p as above. Define $E'' := \bigcup_{e \in E'} p(e)$, $V'' := \{v \in V \mid \exists (v, w) \in E'', w \in V\}$, $T'' := \{t \in T \mid \exists (t, w) \in E'', w \in V\}$, $c'' := c|_{E''}$. Each (optimal) solution to (V'', E'', T'', c'') is (optimal) solution to (V, E, T, c).

\Rightarrow allows to translate reductions into variable fixings during branch-and-bound

Futher uses of reducion techniques

- Primal heuristics: Several heuristics of SCIP-Jack create subproblems (e.g. by merging feasible solutions), reduction techniques are vital to finding a good solution there
- Branch-and-bound: SCIP-Jack branches on vertices, providing new opportunities for reduction techniques

For PACE 2018

new reduction techniques were designed and implemented (suitable for but not restricted to problems with few terminals)

For PACE 2018

- new reduction techniques were designed and implemented (suitable for but not restricted to problems with few terminals)
- reduction techniques and heuristics were performed far more aggressively to compensate for slower LP solver SoPlex
- $\,\triangleright\,$...still SCIP-Jack/CPLEX shows a far stronger performance

For PACE 2018

- new reduction techniques were designed and implemented (suitable for but not restricted to problems with few terminals)
- reduction techniques and heuristics were performed far more aggressively to compensate for slower LP solver SoPlex
- ▷ ...still SCIP-Jack/CPLEX shows a far stronger performance
- b most new algorithms are included in latest SCIP release http://scip.zib.de

Thanks to the organizers of PACE 2018! ...thanks to NETWORKS for travel support! ...and thank you for your attention!

>>> Track A results

* 9th place, 48: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale

>>> Track A results

- * 6th place, 66: Suhas Thejaswi
- * 6th place, 66: Peter Mitura and Ondřej Suchý
- * 6th place, 66: Johannes Varga
- * 9th place, 48: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale

- * 5th place, 67: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 6th place, 66: Suhas Thejaswi
- * 6th place, 66: Peter Mitura and Ondřej Suchý
- * 6th place, 66: Johannes Varga
- * 9th place, 48: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale

- * 4th place, 92: Andre Schidler, Johannes Fichte, and Markus Hecher
- * 5th place, 67: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 6th place, 66: Suhas Thejaswi
- * 6th place, 66: Peter Mitura and Ondřej Suchý
- * 6th place, 66: Johannes Varga
- * 9th place, 48: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale

This is to certify that the 2018 PACE Program Committee recognizes

Andre Schidler, Johannes Fichte, and Markus Hecher

Technische Universität Wien

for Fourth Place in Track A: Exact Steiner Tree with Few Terminals

Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 225,-

Systemberatung Softwareentwicklung Informationsverarbeitung

>>> Track A results

- * 3rd place, 93: Thorsten Koch and Daniel Rehfeldt
- * 4th place, 92: Andre Schidler, Johannes Fichte, and Markus Hecher
- * 5th place, 67: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 6th place, 66: Suhas Thejaswi
- * 6th place, 66: Peter Mitura and Ondřej Suchý
- * 6th place, 66: Johannes Varga
- * 9th place, 48: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale

This is to certify that the 2018 PACE Program Committee recognizes

Daniel Rehfeldt

and

Thorsten Koch

Zuse Institute Berlin

TU Berlin

for

Third Place in Track A: Exact Steiner Tree with Few Terminals

Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 300,-

Systemberatung Softwareentwicklung Informationsverarbeitung

>>> Track A results

- * 2nd place, 94: Krzysztof Maziarz and Adam Polak
- * 3rd place, 93: Thorsten Koch and Daniel Rehfeldt
- * 4th place, 92: Andre Schidler, Johannes Fichte, and Markus Hecher
- * 5th place, 67: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 6th place, 66: Suhas Thejaswi
- * 6th place, 66: Peter Mitura and Ondřej Suchý
- * 6th place, 66: Johannes Varga
- * 9th place, 48: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale

This is to certify that the 2018 PACE Program Committee recognizes

Krzysztof Maziarz and Adam Polak

Jagiellonian University

for Second Place in Track A: Exact Steiner Tree with Few Terminals

Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 350,-

Systemberatung Softwareentwicklung Informationsverarbeitung

>>> Track A results

- * 1st place, 95: Yoichi Iwata and Takuto Shigemura
- * 2nd place, 94: Krzysztof Maziarz and Adam Polak
- * 3rd place, 93: Thorsten Koch and Daniel Rehfeldt
- * 4th place, 92: Andre Schidler, Johannes Fichte, and Markus Hecher
- * 5th place, 67: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 6th place, 66: Suhas Thejaswi
- * 6th place, 66: Peter Mitura and Ondřej Suchý
- * 6th place, 66: Johannes Varga
- * 9th place, 48: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale

This is to certify that the 2018 PACE Program Committee recognizes

Yoichi Iwata

and

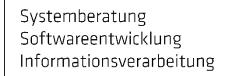
Takuto Shigemura

National Institute of Informatics, Japan

University of Tokyo

for

First Place in Track A: Exact Steiner Tree with Few Terminals


Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 450,-

>>> Track A results - 2

- * Honorable mention: Sharat Ibrahimpur solved 69 out of 100 instances but was incorrect on one instance
- * 11th place, 14: S. Vaishali and Rathna Subramanian
- * 12th place, 9: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M.

The winning heuristic for Track C actually solved all 100 private¹ instances in track A!

¹it returned a wrong answer on some public instance

>>> Track B results

- * 7th place, 33: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 7th place, 33: Dilson Guimarães, Guilherme Gomes, João Gonçalves, and Vinícius dos Santos

>>> Track B results

- * 6th place, 49: Akio Fujiyoshi
- * 7th place, 33: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 7th place, 33: Dilson Guimarães, Guilherme Gomes, João Gonçalves, and Vinícius dos Santos

- * 4th place, 52: Peter Mitura and Ondřej Suchý
- * 4th place, 52: Yasuaki Kobayashi
- * 6th place, 49: Akio Fujiyoshi
- * 7th place, 33: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 7th place, 33: Dilson Guimarães, Guilherme Gomes, João Gonçalves, and Vinícius dos Santos

- * 3rd place, 58: Tom van der Zanden
- * 4th place, 52: Peter Mitura and Ondřej Suchý
- * 4th place, 52: Yasuaki Kobayashi
- * 6th place, 49: Akio Fujiyoshi
- * 7th place, 33: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 7th place, 33: Dilson Guimarães, Guilherme Gomes, João Gonçalves, and Vinícius dos Santos

This is to certify that the 2018 PACE Program Committee recognizes

Tom van der Zanden

Utrecht University

for Third Place in Track B: Exact Steiner Tree with Small Treewidth

Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 300,-

Systemberatung Softwareentwicklung Informationsverarbeitung

>>> Track B results

- * 2nd place, 77: Yoichi Iwata and Takuto Shigemura
 * 3rd place, 58: Tom van der Zanden
- * 4th place, 52: Peter Mitura and Ondřej Suchý
- * 4th place, 52: Yasuaki Kobayashi
- * 6th place, 49: Akio Fujiyoshi
- * 7th place, 33: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 7th place, 33: Dilson Guimarães, Guilherme Gomes, João Gonçalves, and Vinícius dos Santos

This is to certify that the 2018 PACE Program Committee recognizes

Yoichi Iwata

and

Takuto Shigemura

National Institute of Informatics, Japan

University of Tokyo

for

Second Place in Track B: Exact Steiner Tree with Small Treewidth


Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 350,-

- * 1st place, 92: Thorsten Koch and Daniel Rehfeldt
- * 2nd place, 77: Yoichi Iwata and Takuto Shigemura
- * 3rd place, 58: Tom van der Zanden
- * 4th place, 52: Peter Mitura and Ondřej Suchý
- * 4th place, 52: Yasuaki Kobayashi
- * 6th place, 49: Akio Fujiyoshi
- * 7th place, 33: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 7th place, 33: Dilson Guimarães, Guilherme Gomes, João Gonçalves, and Vinícius dos Santos

Daniel Rehfeldt

and

Thorsten Koch

Zuse Institute Berlin

TU Berlin

for

First Place in Track B: Exact Steiner Tree with Small Treewidth

Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 450,-

* 13th place, 80.73: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya

- * 12th place, 82.61: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale
- * 13th place, 80.73: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya

- * 11th place, 94.37: Sharat Ibrahimpur
- * 12th place, 82.61: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale
- * 13th place, 80.73: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya

- * 10th place, 94.57: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M.
- * 11th place, 94.37: Sharat Ibrahimpur
- * 12th place, 82.61: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale
- * 13th place, 80.73: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya

- * 9th place, 96.92: Dimitri Watel and Marc-Antoine Weisser
- * 10th place, 94.57: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M.
- * 11th place, 94.37: Sharat Ibrahimpur
- * 12th place, 82.61: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale
- * 13th place, 80.73: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya

- * 8th place, 97.15: Max Hort, Marciano Geijselaers, Joshua Scheidt, Pit Schneider, and Tahmina Begum
- * 9th place, 96.92: Dimitri Watel and Marc-Antoine Weisser
- * 10th place, 94.57: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M.
- * 11th place, 94.37: Sharat Ibrahimpur
- * 12th place, 82.61: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale
- * 13th place, 80.73: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya

- * 7th place, 97.54: Stéphane Grandcolas
- * 8th place, 97.15: Max Hort, Marciano Geijselaers, Joshua Scheidt, Pit Schneider, and Tahmina Begum
- * 9th place, 96.92: Dimitri Watel and Marc-Antoine Weisser
- * 10th place, 94.57: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M.
- * 11th place, 94.37: Sharat Ibrahimpur
- * 12th place, 82.61: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale
- * 13th place, 80.73: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya

- * 6th place, 98.27: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 7th place, 97.54: Stéphane Grandcolas
- * 8th place, 97.15: Max Hort, Marciano Geijselaers, Joshua Scheidt, Pit Schneider, and Tahmina Begum
- * 9th place, 96.92: Dimitri Watel and Marc-Antoine Weisser
- * 10th place, 94.57: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M.
- * 11th place, 94.37: Sharat Ibrahimpur
- * 12th place, 82.61: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale
- * 13th place, 80.73: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya

- * 5th place, 98.93: Mateus Oliveira and Emmanuel Arrighi
- * 6th place, 98.27: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Mateusz Radecki, and Michał Ziobro
- * 7th place, 97.54: Stéphane Grandcolas
- * 8th place, 97.15: Max Hort, Marciano Geijselaers, Joshua Scheidt, Pit Schneider, and Tahmina Begum
- * 9th place, 96.92: Dimitri Watel and Marc-Antoine Weisser
- * 10th place, 94.57: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M.
- * 11th place, 94.37: Sharat Ibrahimpur
- * 12th place, 82.61: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale
- * 13th place, 80.73: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya

The top 4 got an average ratio above 0.997

* 4th place, 99.72: Radek Hušek, Tomáš Toufar, Dušan Knop, Tomáš Masařík, and Eduard Eiben

Radek Hušek, Tomáš Toufar, Tomáš Masarík, Dušan Knop, and Eduard Eiben

Charles University

& University of Bergen, Norway

for Fourth Place in Track C: Heuristic Steiner Tree

Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 225,-

The top 4 got an average ratio above 0.997

- * 3rd place, 99.80: Martin J. Geiger
- * 4th place, 99.72: Radek Hušek, Tomáš Toufar, Dušan Knop, Tomáš Masařík, and Eduard Eiben

Martin Geiger

Helmut Schmidt Universität, Hamburg

for Third Place in Track C: Heuristic Steiner Tree

Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 300,-

The top 4 got an average ratio above 0.997

- * 2nd place, 99.85: Thorsten Koch and Daniel Rehfeldt
- * 3rd place, 99.80: Martin J. Geiger
- * 4th place, 99.72: Radek Hušek, Tomáš Toufar, Dušan Knop, Tomáš Masařík, and Eduard Eiben

Daniel Rehfeldt and Thorsten Koch

Zuse Institute Berlin

TU Berlin

Second Place in Track C: Heuristic Steiner Tree

Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

€ 350,-

The top 4 got an average ratio above 0.997

- * 1st place, 99.93: Emmanuel Romero Ruiz, Emmanuel Antonio Cuevas, Irwin Enrique Villalobos López, and Carlos Segura González
- * 2nd place, 99.85: Thorsten Koch and Daniel Rehfeldt
- * 3rd place, 99.80: Martin J. Geiger
- * 4th place, 99.72: Radek Hušek, Tomáš Toufar, Dušan Knop, Tomáš Masařík, and Eduard Eiben

Emmanuel Romero Ruiz, Emmanuel Antonio Cuevas, Irwin Enrique Villalobos Lopez, and Carlos Segura González

Center for Research in Mathematics, Guanajuato, Mexico

for

First Place in Track C: Heuristic Steiner Tree

Édouard Bonnet, ENS de Lyon

Florian Sikora, Université Paris-Dauphine

2018 PACE Program Committee Co-chairs

PACE 2018-2019 program committee

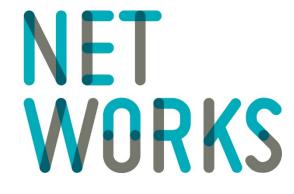
Markus Hecher TU Wien Johannes Fichte

TU Dresden

PACE 2018-2019 program committee

Markus Hecher Johannes Fichte

TU Wien TU Dresden



PACE timeline in 2018-2019

Tentative time schedule

- Today: Announcement of the PC & challenge problem
- October 1st 2018: Announcement of challenge problems & tracks
- November 1st 2018: Announcement of detailed problem setting and inputs
- At least 2 weeks before IPEC deadline: Result communicated to participants
- September 10-14 2019: Award ceremony at IPEC

NETWORKS is a project of University of Amsterdam Eindhoven University of Technology Leiden University Center for Mathematics and Computer Science (CWI)

Systemberatung Softwareentwicklung Informationsverarbeitung

pacechallenge.wordpress.com

Image: Constraint of the second state of the secon